Categories
Uncategorized

COMP542 – Machine Learning – IT Assignment Help

  • Subject Code :

    COMP542

  • Country :

    United States America

Connect with COMP542 Expert Now

Assignment Task

1. K-Mean++. Implement K-Mean++  clustering algorithm in python as follows:

– Read    input    file    ‘as4_1.txt’    given    in    the    Canvas    course    website. The    file    is    composed    of    X    and    Y    values    in    the    first    and    second    columns    and    label    in    the    third    column.

– Create myInit() that    places    the    initial    k centroids    far    away    from    each    other    in    the    

4    steps    as    shown    below:

1. Randomly    select    the    first    centroid    from    the    data    points

2. For    each    data    point    compute    its    distance    from    the    nearest,    previously    chosen    centroid

Use    following    Euclidean distance    function: import numpy as np def euclidean2D(point1, point2):

 x1 = point1[0]

 x2 = point2[0]

 y1 = point1[1]

 y2 = point2[1] return np.sqrt((x1 – x2)**2 + (y1 – y2)**2)

3. Select    the    point    having    maximum    distance    from    the    nearest    centroid    as    the    next    centroid

4. Repeat  steps    2    and    3    until    k centroids    have    been    sampled

– Create    myAssign() that    assigns    each    example    to    the    nearest    centroid

– Create    myCentroid() that    calculates    a    new    centroid    of    all    points    that    are    assigned    to    the    same    centroid.

– Create    myUpdateCentroid() that    moves    the    centroids    to    the    center    of    the    examples    that    were    assigned    to    it

– Create    myKmeanPlusPlus() that    initially    calls    myInit(),    and    then    repeats    to    call    myAssign(),    myCentroid(), and    myUpdateCentroids() until    the   cluster    assignments    do    not    change    or    a    user-defined    tolerance    or    maximum    number    of    iteration    is    reached.        myKmeanPlusPlus() should   ask    user    to    receive    the    following    arguments    and    use    the    same    variable    name    in    the    parenthesis:

1. The    number    of    clusters    (k)

2. Tolerance    (myTol)

3. Maximum    number    of    iterations    (myMax) myKmeanPlusPlus()returns    a    list    of new labels.

– Create    myPlot() that    visualizes    plot    of    clustering    result    in    different    colors    and    markers.    You    can    use    any    plot    method.

This COMP542 – IT Assignment has been solved by our IT experts at Schooling Best. Our Assignment Writing Experts are efficient to provide a fresh solution to this question. We are serving more than 10000+ Students in Australia, UK & US by helping them to score HD in their academics. Our Experts are well trained to follow all marking rubrics & referencing style.

Be it a used or new solution, the quality of the work submitted by our assignment experts remains unhampered. You may continue to expect the same or even better quality with the used and new assignment solution files respectively. There’s one thing to be noticed that you could choose one between the two and acquire an HD either way. You could choose a new assignment solution file to get yourself an exclusive, plagiarism (with free Turnitin file), expert quality assignment or order an old solution file that was considered worthy of the highest distinction.

  • Uploaded By : Brett

  • Posted on : December 20th, 2019

  • Downloads : 0

Order New Solution

Can’t find what you’re looking for?

This Christmas, The Most Magical Time of The Year, save up to 65% on Our one-to-one Academic Assistance.

Grab Now